Practical Haskell Programming:
Scripting With Types

Don Stewart | Amazon | 2011-02-04

Scripting with Types : Themes

" |Introduction to thinking in functions
" Designing with types
" An example: scripting privileged syscalls
" Engineering tools for reliability
" Further reading
" How Galois uses FP

F}_T\,’ Ty . ®
(Abs) [Nz:o..€e:0

I F. Ar:oz.e: 0 —

L © 2010 Galois, Inc. All rights reserved.

Part 1. Shell scripting

L © 2010 Galois, Inc. All rights reserved.

Go away or I
will replace you
with a very small

shell script.

N
| galois |

.
| galois |

Motivation: shell scripting

Shell scripts are the bread and butter of programming

* Don’t do manually what the computer could do for you
— #!/bin/sh

* Often quick and dirty: get something running immediately
— Developed in a compositional style: f| g | h > foo.txt
— Often little attention paid to error handling
— All data simply typed as strings

* Great for simple problems
* But fragile, slow and unwieldy as requirements change

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

Haskell is ...

" A functional language

u I N
Strongly statically typed -

" 21 years old

" Open source http://haskell.org
. : : http://haskell.org/platform
Compiled and interpreted http://hackage.haskell.org

" Used in research, open source and industry

) -= Download

“ Haskell

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

Haskell for shell scripting

In some ways, the opposite of shell scripting

* Built on generic, reusable abstractions

* Error handling up front

* Strong, static types with flexible type system

* But still concise! f.g.h

* Other benefits
— Native code optimization (LLVM) and compilation
— Parallel and concurrent runtime
— Debuggers, profiling tools, refactoring, coverage, testing tools
— Library support, distribution mechanisms

L © 2010 Galois, Inc. All rights reserved.

Goal: robust, maintainable scripting

Automate grunt work, to free you to tackle harder problems
Use solid software engineering practices for “scripting”

* Improve robustness of scripts over time

* Improve maintainability of scripts

* Improve performance of scripts

Focus is on scripts with an eye to long term use

* Use abstractions in code to model problem domain in
scripts

Similar techniques apply for text encodings, SQL injections,
string interpolation, ...

L © 2010 Galois, Inc. All rights reserved.

Simple example: CPU frequency scripting

Modern laptops have variable frequency CPUs
* Low clock speed: cooler machine, longer battery life
* High clock speed: fast code!

For benchmarking, | need to turn the CPU up to 11: no auto-
scaling.

A shell script and Haskell program to toggle this behavior:
S cpupertf S cpupertf
cpu: 0 —=> 100 cpu: 100 -> 0
clock: 2.66 Ghz clock: 1 Ghz

L © 2010 Galois, Inc. All rights reserved.

A shell program for frequency pinning

Host OS: OpenBSD

No /proc filesystem, instead “sysctls” are used
* Mutable variables in the kernel

* Read or set via the “sysctl” program:

S sysctl kern.ostype
kern.ostype=0OpenBSD

S sysctl hw.cpuspeed
hw.cpuspeed=600

S sysctl hw.setperf

hw.setperf=0

L © 2010 Galois, Inc. All rights reserved.

Privileged mode

Setting sysctl variables means mutating a value in the
running kernel process

This is a privileged operation: you must be root at the time.
Use “sudo” to gain elevated privileges.
Set these as only password-less operations:

dons NOPASSWD: /bin/sysctl —w hw.setperf=0
dons NOPASSWD: /bin/sysctl —-w hw.setperf=100

L © 2010 Galois, Inc. All rights reserved.

A shell implementation galis|

#!/bin/sh

s="sysctl hw.setperf"
old="echo $s | sed ‘s/.*=//'"
if [“100” = $o0ld] ; then
new=0
else
new=100

fi
sudo sysctl -w hw.setperf=$new > /dev/null

printf “cpu: %d -> %d\n” $o0ld $new
speed="sysctl hw.cpuspeed"’

clock="echo $speed | sed ‘s/.*=//'"
clock2="bc -1 -e “$clock / 1000” -e quit’
printf “clock: %0.1f Ghz\n” %clock

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

Straight forward design

* Read the state of the world
* Perform pure logical operations on the data

* Render new data, driving external services:
— Setting kernel variables

 Check that state of world matches what we think it is

* Red flags:
— regular expressions used for parsing
— no error handling
— type confusion: numbers and strings mixed up
— floating point math needs external services
— root privileges are taken

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

Direct Haskell translation (imperative style)

import Text.Printf

import Process

main = do
s <- run “sysctl hw.setperf”
let old = clean s

new | old == 100 =0

| otherwise = 100

run $ “sudo sysctl -w hw.setperf=" ++ show new

printf “cpu: %d -> %d\n” old new

s’ <- run “sysctl hw.setperf”
let clock = fromIntegral (clean s’) / 1000
printf “clock: %$f Ghz\n” clock

where

clean = read . init . tail . dropWhile (/=

L © 2010 Galois, Inc. All rights reserved.

Notes on imperative Haskell

* Regular expressions replaced with list manipulations
* Failure translated into (unhandled) exceptions
* |0 operations and pure math are interleaved

* Some additional typing: strings, integers and doubles are
distinguished

* Bytecode interpreter:
$ runhaskell naive.hs
* Compiled:
$ ghc -02 -make naive.hs -o cpuperf

S ./cpuperf

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

Part 2. Doing a better job: a DSL for sysctls

L © 2010 Galois, Inc. All rights reserved.

Code smells

A number of code smells are present

* The semantics of “sysctl” isn't obvious in the code

* No reuse of code possible

* No error handling strategy

* Fast and loose with privileges — could bite us in the future

General rule: be domain specific

* the abstractions in the program should model the
abstractions of the problem domain

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

Domain specific shell code

Abstraction 1: sysctls are “variables” — mutable memory cells
And mutable cells have a well-known API:

Read a value from a box holding a’s:

get :: Box a -> m a

Write a value into a box:

set :: Box a —-> a ->m ()

Take a box and a function over a’s, and mutate the box with that function

modify :: Box a -> (a -> a) -> m (a,a)

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

sysctls act as mutable cells storing integers, keyed by strings.
The cell APl can be implemented as:

Concrete API for sysctls

get :: String -> IO Integer

set :: String -> Integer -> Priv ()
And:

modify :: String

—-> (Integer -> Integer)
-> TO (Integer, Integer)

L © 2010 Galois, Inc. All rights reserved.

Implementation in Haskell

get s = do

v <- run $ “sysctl” <+> s

readM (parse V)
where
parse = tail dropWhile
set s v = run $

printf “sysctl -w %s=%s”

L © 2010 Galois, Inc. All rights reserved.

(/

S

.
| galois |

— _\)

init

(show v)

.
| galois |

Implementation ... continued

modify s £ = do
v <- get s
let u = 1%t v
set s u

return (v, u)

L © 2010 Galois, Inc. All rights reserved.

Simpler code: a DSL for sysctls

We can now rewrite our script as:

toggle v | v ==

100 =0

| otherwise = 100

main = do

(0ld, new) <- modify “hw.setperf” toggle

clock <- get “hw.cpuspeed”

©)

printf “cpu: %

printf “clock:

L © 2010 Galois, Inc. All rights reserved.

-> %d\n” old new
$f Ghz\n” (clock / 1000)

.
| galois |

Part 3: improving error handling

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

Exception handling
So far, both shell code and Haskell have ignored exceptions
E.g. data is parsed with a list processing pipeline:

parse
= read
init
tall
dropWhile (/= ‘=V)

However, malformed data will cause a parsing
exception to be thrown.

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

Rather than terminating our program with an exception, we’ll
lift errors into an abstraction: the Error monad

And then add custom error handling

Capturing errors in a monad

Explicit parse errors:

readM s | [x] <- parse = return x
| otherwise = throwError (show s)
where
parse = [x | (x,t) <- reads s]

Now parse failures from malformed data will call the
throwError method.

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

There are many different notions of error, so a type class is
provided so that different sorts of errors can have a
common interface

Error handling is overloaded

instance MonadError IO where
throwError = i1ioError

instance MonadError e (Either e) where

throwError = lLeft

Now, depending on the return type we choose, we
can get custom error handling behavior

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

Now, we really should check the return value of every partial function —
anything that might fail.

In Ha?kell, possibly-error values are tagged with the Either type: Right a |
Leftb

Checking for all possible errors

modify s £ = do
ev <- get s
case ev of
Left e -> return (Left e)
Right v -> do
let u=£fv
ev <- set s u
case ev of
Left e -> return (Left e)
Right -> return (Right (wv,u))

L © 2010 Galois, Inc. All rights reserved.)

Scrap your boilerplate!

Our beautiful program is now wrapped in obfuscating error
handling boilerplate.

After each possibly-failing computation:

* check the result
— then either propagate the failure up,
— or pass a value further on.

* We have a particular blob of glue to run between every
step.

* We probably have a monad!

L © 2010 Galois, Inc. All rights reserved.

There will be monads

© 2010 Galois, Inc. All rights reserved.

Either forms a monad: the glue in our code

instance Monad (Either e) where

return = Right

Left 1 >>= = Left 1
Right r >>= k k r

If one step ends in Left, discard the rest of the
program, and return that Left value.

If one step ends in a Right, pass its result to the rest
of the computation.

We have a programmable semi-colon!

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

Programmable semi-colons

Replace generic IO with custom error handling *;’

newtype Shell a =
Shell { runShell :: ErrorT String IO a }

instance MonadError String Shell where

throwError = error . (“Shell failed: “ ++)

Now, let’'s rewrite ‘'modify’ to handle errors better....

L © 2010 Galois, Inc. All rights reserved.

Abstracting out the error handling

modify s £ = do
ev <—- get s
case ev of
Left e -> return (Left e)
Right v -> do
let u =1~ v
ev <- set s u
case ev of
Left e -> return (Left e)
Right - -> return (Right (v,u)

L © 2010 Galois, Inc. All rights reserved.

)

.
| galois |

Replacing with bind...

modify s £ = do
get s
>>= \v -> do

let u = £ v
set s u

>>= \v -> do

return

L © 2010 Galois, Inc. All rights reserved.

(v, u)

.
| galois |

.
| galois |

Using do-notation syntax

modify s £ = do {
v <= get s ;
let u =1t v ;
v <= set s u ;

return (v,u) ;

L © 2010 Galois, Inc. All rights reserved.

And using whitespace layout...

modify s £ = do
v <= get s
let u = 1%t v
v <= set s u

return (v,u)

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

Same code, but smarter

* instead of unchecked errors in 1O

And different behavior:

* Before: parse error.

* After: cpuperf: checked errors:
— Shell failed: Failed parse:

* All in the programmable *;’

L © 2010 Galois, Inc. All rights reserved.

So we now have the same code as before for ‘modify’

* it has checked errors in a custom Shell monad

“hw.setperf=0n”

.
| galois |

N
| galois |

Part 4. Privilege Separation

Embeddlng a problem in the type system

L © 2010 Galois, Inc. All rights reserved.

Escalating privileges is bad

Directly calling ‘sudo’ is a bit worrying.

In larger software abuse of root privileges leads to security
holes, as it becomes hard to track what code fragments are
running with elevated privileges.

Goal: full control of the scope of ‘sudo’
Goal 2: compile-time errors if ‘sudo’ is used in the wrong code

We will lean on the type system...

L © 2010 Galois, Inc. All rights reserved.

Standard trick: a tracking monad
Regular code has type:
Shell a
We'll make sure elevated code has type:
Priv a
A new monad for privileged actions:

newtype Priv a = Priv { priv

L © 2010 Galois, Inc. All rights reserved.

Shell a }

.
| galois |

.
| galois |

And add custom error handling

A customized message for errors in privileged mode:

instance MonadError String Priv where
throwError =

error . (“Priv failed: “ ++)

L © 2010 Galois, Inc. All rights reserved.

.
| galois |

Smart constructors: only one way in

The key step now is to ensure the only way to construct a
“Priv” value is to run sudo.

We will use a “smart constructor”, and lift ‘set’ into Priv:

runPriv :: String -> Priv String
runPriv s = Priv $

run (“/usr/bin/sudo” <+> s)

set :: String -> Integer -> Priv String

set s v = runPriv S

©)

printf “sysctl -w %$s=%s\n” s (show V)

L © 2010 Galois, Inc. All rights reserved.

Now the type checker does the security audit!

Now calls to privileged code can only be made inside
a 'priv' tag:

Main.hs: 66:4:
Couldn’t match expected type "Shell t’

against inferred type Priv String’

Unsafe calls to ‘set’ are type errors:
set s u
becomes
priv (set s u)
And the scope of privileges is lexically visible

L © 2010 Galois, Inc. All rights reserved.

Part 5. Summary

.
| galois |

Shell programming as case-study of DSLs

A throw-away script may get used over and over.
Even simple code contains many subtle behaviors

Good languages let us embed the problem domain semantics in the host
language semantics.

And we can use standard tools:
* types

* libraries

* abstractions

* compilation, optimizations...

to make code more precise, safer and more reliable

L © 2010 Galois, Inc. All rights reserved.

Similar tools

Other functional languages

Statically Typed: OCaml — everything in the |O monad
Dynamically Typed: Erlang, Scheme, Clojure

Hybrid languages:
JVM: Scala — statically typed, with OO features
NET: F# — OCaml subset with some Haskell on .NET.

L © 2010 Galois, Inc. All rights reserved.

Further reading

Real World Haskell:

http://book.realworldhaskell.org/

Example embedded domain specific languages:

Orc - concurrent workflow scripting

Accelerate — GPU array processing

atom — hard real-time, safety critical controllers
HJScript — typed JavaScript in Haskell

haskore — music notation in Haskell

Feldspar — digital signal processing

All on http://hackage.haskell.org

L © 2010 Galois, Inc. All rights reserved.

N
| galois |

http://book.realworldhaskell.org/
http://hackage.haskell.org/

.
| galois |

And what does Galois do?

Portland-based research and development contracting for
critical systems. We love FP languages. http://galois.com

Virtualization: HaLVM (GHC runtime on Xen for tiny, domain-specific
operating systems)

— mobile devices, cloud nodes

Identity and Security: |IdM systems for grid systems, and networks with
multiple security levels

Embedded Systems: CoPilot, a DSL for writing hard real-time control
systems code

— aerospace, automotive, industrial apps
Cryptography: Cryptol, a DSL for doing cryptography
— prove algorithms correct, generate fast code

L © 2010 Galois, Inc. All rights reserved.)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

